Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1536467

ABSTRACT

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Subject(s)
COVID-19/pathology , COVID-19/virology , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/virology , Macrophages/pathology , Macrophages/virology , SARS-CoV-2/physiology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/diagnostic imaging , Cell Communication , Cohort Studies , Fibroblasts/pathology , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/genetics , Mesenchymal Stem Cells/pathology , Phenotype , Proteome/metabolism , Receptors, Cell Surface/metabolism , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Tomography, X-Ray Computed , Transcription, Genetic
2.
Cells ; 10(11)2021 11 02.
Article in English | MEDLINE | ID: covidwho-1533813

ABSTRACT

Recent clinical trials of mesenchymal stromal cell (MSC) therapy for various inflammatory conditions have highlighted the significant benefit to patients who respond to MSC administration. Thus, there is strong interest in investigating MSC therapy in acute inflammatory lung conditions, such as acute respiratory distress syndrome (ARDS). Unfortunately, not all patients respond, and evidence now suggests that the differential disease microenvironment present across patients and sub-phenotypes of disease or across disease severities influences MSC licensing, function and therapeutic efficacy. Here, we discuss the importance of licensing MSCs and the need to better understand how the disease microenvironment influences MSC activation and therapeutic actions, in addition to the need for a patient-stratification approach.


Subject(s)
Inflammation/pathology , Lung/pathology , Mesenchymal Stem Cells/pathology , Animals , Humans , Mesenchymal Stem Cell Transplantation , Translational Research, Biomedical , Treatment Outcome
3.
Int J Mol Sci ; 22(21)2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1488618

ABSTRACT

The inflammatory response plays a central role in the complications of congenital pulmonary airway malformations (CPAM) and severe coronavirus disease 2019 (COVID-19). The aim of this study was to evaluate the transcriptional changes induced by SARS-CoV-2 exposure in pediatric MSCs derived from pediatric lung (MSCs-lung) and CPAM tissues (MSCs-CPAM) in order to elucidate potential pathways involved in SARS-CoV-2 infection in a condition of exacerbated inflammatory response. MSCs-lung and MSCs-CPAM do not express angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TRMPSS2). SARS-CoV-2 appears to be unable to replicate in MSCs-CPAM and MSCs-lung. MSCs-lung and MSCs-CPAM maintained the expression of stemness markers MSCs-lung show an inflammatory response (IL6, IL1B, CXCL8, and CXCL10), and the activation of Notch3 non-canonical pathway; this route appears silent in MSCs-CPAM, and cytokine genes expression is reduced. Decreased value of p21 in MSCs-lung suggested no cell cycle block, and cells did not undergo apoptosis. MSCs-lung appears to increase genes associated with immunomodulatory function but could contribute to inflammation, while MSCs-CPAM keeps stable or reduce the immunomodulatory receptors expression, but they also reduce their cytokines expression. These data indicated that, independently from their perilesional or cystic origin, the MSCs populations already present in a patient affected with CPAM are not permissive for SARS-CoV-2 entry, and they will not spread the disease in case of infection. Moreover, these MSCs will not undergo apoptosis when they come in contact with SARS-CoV-2; on the contrary, they maintain their staminality profile.


Subject(s)
Mesenchymal Stem Cells/metabolism , Respiratory System Abnormalities , SARS-CoV-2/physiology , Transcriptome , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Cells, Cultured , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Humans , Infant , Lung/abnormalities , Lung/metabolism , Lung/pathology , Male , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/virology , RNA-Seq , Respiratory System Abnormalities/genetics , Respiratory System Abnormalities/pathology , Respiratory System Abnormalities/virology
4.
Signal Transduct Target Ther ; 6(1): 339, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1402052

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has placed a global public burden on health authorities. Although the virological characteristics and pathogenesis of COVID-19 has been largely clarified, there is currently no specific therapeutic measure. In severe cases, acute SARS-CoV-2 infection leads to immune disorders and damage to both the adaptive and innate immune responses. Having roles in immune regulation and regeneration, mesenchymal stem cells (MSCs) serving as a therapeutic option may regulate the over-activated inflammatory response and promote recovery of lung damage. Since the outbreak of the COVID-19 pandemic, a series of MSC-therapy clinical trials has been conducted. The findings indicate that MSC treatment not only significantly reduces lung damage, but also improves patient recovery with safety and good immune tolerance. Herein, we summarize the recent progress in MSC therapy for COVID-19 and highlight the challenges in the field.


Subject(s)
COVID-19/therapy , Lung Injury/therapy , Lung/immunology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/pathology , Humans , Lung/pathology , Lung/virology , Lung Injury/immunology , Lung Injury/virology , Mesenchymal Stem Cells/pathology
5.
Stem Cells ; 39(7): 904-912, 2021 07.
Article in English | MEDLINE | ID: covidwho-1126519

ABSTRACT

We have shown previously that transplanted bone marrow mononuclear cells (BM-MNC), which are a cell fraction rich in hematopoietic stem cells, can activate cerebral endothelial cells via gap junction-mediated cell-cell interaction. In the present study, we investigated such cell-cell interaction between mesenchymal stem cells (MSC) and cerebral endothelial cells. In contrast to BM-MNC, for MSC we observed suppression of vascular endothelial growth factor uptake into endothelial cells and transfer of glucose from endothelial cells to MSC in vitro. The transfer of such a small molecule from MSC to vascular endothelium was subsequently confirmed in vivo and was followed by suppressed activation of macrophage/microglia in stroke mice. The suppressive effect was absent by blockade of gap junction at MSC. Furthermore, gap junction-mediated cell-cell interaction was observed between circulating white blood cells and MSC. Our findings indicate that gap junction-mediated cell-cell interaction is one of the major pathways for MSC-mediated suppression of inflammation in the brain following stroke and provides a novel strategy to maintain the blood-brain barrier in injured brain. Furthermore, our current results have the potential to provide a novel insight for other ongoing clinical trials that make use of MSC transplantation aiming to suppress excess inflammation, as well as other diseases such as COVID-19 (coronavirus disease 2019).


Subject(s)
Cell Communication , Gap Junctions , Human Umbilical Vein Endothelial Cells/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Stroke , Allografts , Animals , COVID-19/metabolism , COVID-19/pathology , Gap Junctions/metabolism , Gap Junctions/pathology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice , SARS-CoV-2/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/therapy
6.
Stem Cells Transl Med ; 10(4): 568-571, 2021 04.
Article in English | MEDLINE | ID: covidwho-996305

ABSTRACT

The use of mesenchymal stem cells (MSC) derived from several sources has been suggested as a major anti-inflammation strategy during the recent outbreak of coronavirus-19 (COVID-19). As the virus enters the target cells through the receptor ACE2, it is important to determine if the MSC population transfused to patients could also be a target for the virus entry. We report here that ACE2 is highly expressed in adult bone marrow, adipose tissue, or umbilical cord-derived MSC. On the other hand, placenta-derived MSC express low levels of ACE2 but only in early passages of cultures. MSC derived from human embryonic stem cell or human induced pluripotent stem cells express also very low levels of ACE2. The transcriptome analysis of the MSCs with lowest expression of ACE2 in fetal-like MSCs is found to be associated in particularly with an anti-inflammatory signature. These results are of major interest for designing future clinical MSC-based stem cell therapies for severe COVID-19 infections.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Cell- and Tissue-Based Therapy , Mesenchymal Stem Cells , SARS-CoV-2/immunology , Transcriptome/immunology , Adult , Female , Humans , Infant, Newborn , Male , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/virology , Organ Specificity/immunology
7.
Biochim Biophys Acta Mol Basis Dis ; 1867(2): 166014, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-938765

ABSTRACT

The coronavirus disease 2019 (COVID-19) has been threatening the globe since the end of November 2019. The disease revealed cracks in the health care system as health care providers across the world were left without guidelines on definitive usage of pharmaceutical agents or vaccines. The World Health Organization (WHO) declared COVID-19 as a pandemic on the 11th of March 2020. Individuals with underlying systemic disorders have reported complications, such as cytokine storms, when infected with the virus. As the number of positive cases and the death toll across the globe continue to rise, various researchers have turned to cell based therapy using stem cells to combat COVID-19. The field of stem cells and regenerative medicine has provided a paradigm shift in treating a disease with minimally invasive techniques that provides maximal clinical and functional outcome for patients. With the available evidence of immunomodulatory and immune-privilege actions, mesenchymal stem cells (MSCs) can repair, regenerate and remodulate the native homeostasis of pulmonary parenchyma with improved pulmonary compliance. This article revolves around the usage of novel MSCs therapy for combating COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Cytokine Release Syndrome/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Pandemics , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/pathology , Cytokine Release Syndrome/epidemiology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Female , Humans , Male , Mesenchymal Stem Cells/pathology
8.
Stem Cell Res ; 49: 102066, 2020 12.
Article in English | MEDLINE | ID: covidwho-929389

ABSTRACT

Due to the multi-potential differentiation and immunomodulatory function, mesenchymal stem cells (MSCs) have been widely used in the therapy of chronic and autoimmune diseases. Recently, the novel coronavirus disease 2019 (COVID-19) has grown to be a global public health emergency but no effective drug is available to date. Several studies investigated MSCs therapy for COVID-19 patients. However, it remains unclear whether MSCs could be the host cells of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) and whether they might affect the SARS-CoV-2 entry into other cells. Here, we report that human MSCs barely express ACE2 and TMPRSS2, two receptors required for the virus endocytosis, indicating that MSCs are free from SARS-CoV-2 infection. Furthermore, we observed that MSCs were unable to induce the expression of ACE2 and TMPRSS2 in epithelial cells and macrophages. Importantly, under different inflammatory challenge conditions, implanted human MSCs failed to up-regulate the expression of ACE2 and TMPRSS2 in the lung tissues of mice. Intriguingly, we showed that a SARS-CoV-2 pseudovirus failed to infect MSCs and co-cultured MSCs did not increase the risk of SARS-CoV-2 pseudovirus infection in epithelial cells. All these results suggest that human MSCs have no risk of assisting SARS-CoV-2 infection and the use of MSCs as the therapy for COVID-19 patients is feasible and safe.


Subject(s)
COVID-19/transmission , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , SARS-CoV-2/metabolism , Safety , Angiotensin-Converting Enzyme 2/biosynthesis , Animals , Cell Line , Heterografts , Humans , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/virology , Mice , Serine Endopeptidases/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL